
Information Retrieval Algorithms: A Survey

Prabhakar Raghavan*

Abstract

We give an overview of some algorithmic problems arising

in the representation of text/image/multimedia objects in a

form amenable to automated searching, and in conducting

these searches efficiently. These operations are central to

information retrieval and digital library systems.

tional linguistics; (3) user interfaces and user models;
(4) network and distributed retrieval issues including
server/network performance and load balancing; (5) se-
curity, access control and rights management.

1 Introduction.

The design and implementation of information retrieval
systems is concerned with methods for storing, orga-
nizing aud retrieving information from a collection of
documents. The quality of such a system is measured
by how useful it is to the typical users of the system.
The role of the user in this process cannot be underes-
timated: for instance, a scholar seeking a research pa-
per from a corpus of specialist articles is very different
from a consumer seeking a good small car to buy, on
the world-wide web. The availability of hypermedia has
opened up new paradigms for seeking information: a
user may do a simple keyword search, or may search
through a hierarchical index of categories, or may fol-
low hyperlinks through a se.quence of related documents
(commonly referred to as ‘Lbrowsing”) - or may use
some combination of these.

In the remainder of this paper, we will refer to
a collection of objects as a corpus. Documents are
a particular type of object consisting of a sequence
of terms; by a term we typically mean a word, but
more generally a sequence of words that tend to occur
together (e.g., “Massachusets Institute of Technology”).
For a corpus consisting of text documents, a query is a
set of terms.

We have noted above that the eventual test for an
information retrieval system comes from user satisfac-
tion. Can this be translated to something more quanti-
tative that can be studied experimentally? What does
this translat,e to in terms of the component algorithms?

The source of the documents also important: a
corpus of scholarly articles may contain a great deal of
specialist information, but will generally enjoy a level
of authorship and consistency of style not found in
less structured corpora (such as the world-wide web,
where the variegated content and style present serious
obstacles to retrieval).

In this paper we focus on algorithmic issues arising
in two aspects of information retrieval systems: (1) rep-
resenting objects ’ in a form amenable to automated
searching, and (2) efficiently searching such represen-
tations. We do not consider in detail algorithmic is-
sues arising in the following other important aspects of
information retrieval systems: (1) file structures and
database population and maintenance; (2) computa-

Besides retrieval speed (and, less obvious to the
user, database population or “preprocessing” speed),
there are two common quantitative measures for tra-
ditional information retrieval systems. Consider a set-
ting in which a user enters a query into the system, and
receives a set of documents in return. The precasion
of the system on this query is the fraction of the re-
turned documents that are relevant to the user’s query.
The recall of the system on this query is the fraction
of relevant documents in the underlying corpus that are
returned. A system can trivially provide perfect recall
simply by returning all the documents in the corpus on
every query; but this leads to poor precision. A wealth
of experimental evidence suggests that in general, there
is a tradeoff between the precision and the recall that a
system can provide.

IBEX Research Division, Almadsn Research Center, 650 Harry
Road, San Jose CA 95120.

*We will in general speak of “objects” that are understood
to be text, images, video or some combination thereof as in
multimediadocuments; we will use the simpler term “documents”
to mean text alone.

Some noteworthy issues; (1) in the above, “rele-
vance” is thought of as a binary attribute: a document
in the corpus is either relevant to the query, or it is not;
(2) when reporting experimental research, it is common
to average the precision and recall figures over a large
number of queries; (3) in benchmark suites such as the

TREC series [17], it is typical to provide a corpus and
a set. of queries; in addition there is a set of relevance
judgements from an expert panel giving, for each query,
the set of documents in the corpus deemed to be rele-
vant to that query.

Clearly the operations we have chosen to con-

I 1

12

sider in this paper - structures for storing objects,
and searching these structures - will influence system
speed/scalability, precision and recall. In 5 2 we review
the most basic algorithmic operations found in virtu-
ally all retrieval systems. In § 3 we study a suite of
algorithms for storing and retrieving objects in the gen-
eral setting of vector space mdels. In 5 5 we review the
current state of art in the systems most commonly in
use, especially for web search.

2 Basic algorithmic operations.

In this section we discuss some ideas that pervade most
information retrieval systems. The first three - in-
dexing, negative dictionaries (also known as “stop word
lists”) and stemming - exist in some form in virtually
all systems. For the remainder of this section, we only
discuss text retrieval from a corpus of documents.

Indexing is the most basic mechanism for prepar-
ing a corpus of documents for searching. In the sim-
plest form the index stores, for every term, a list of all
documents containing that term. Consider a query con-
sisting of a set of search terms, stored (for instance)
in alphabetical order. A simple lookup now retrieves
all documents containing at least one of the search
terms. However, this algorithmically expeditious ap-
proach leads to poor recall, as users typically do not
launch a query consisting of a Boolean OR of search
terms. Far more likely (especially in a large corpus
such as the web) is a search for documents matching
a Boolean AND of search terms. One answer would be
to retrieve the set of documents matching each search
term, and then take the intersection of the resulting
sets. One problem with this approach: it may process
many more documents than appear in the output. More
generally, it may be desirable for the system to return a
list of documents ranked by the number of search terms
occurring in the document, or some variant thereof.

GOAL 1. To devise efficient algorithms GOT (1) retriev-
ing the set of documents containing every one of several

search terms, and (2) f or returning documents contazn-

ing any of the search terms, ranked by the number of
search terms that OCCUT in the document.

It should be stressed, though, that in designing a
system the algorithm design is intertwined with the wer
interface, and with an understanding of the target user
population. For instance, an algorithm that works well
as the number of search terms goes to infinity is not
much use if the user interface only allows the user to
enter 3 search terms (or if the user population is one
that seldom enters more than, say, 2 terms).

A more general type of index encodes not only all
documents containing each search term, but also the

position of each occurrence of the term in the document.
This enables such queries as finding all occurrences of
a string that is not already indexed as a search term
(for instance, if “Massachusets Institute of Technology”
were not indexed as a term, we could use such an
index provided the terms “Massachusets”, “Institute”
and “Technology” were all indexed with their positions
recorded). The retrieval system that currently appears
to support the largest corpus for such queries is Digital’s
AltaVista.

GOAL 2. Devise efticient algorithms and index designs

for supporting moTe complex queries such as string
queries.

For an algorithm to succeed at such goals, it is
essential to understand the underlying corpus. Do
all documents use the same underlying vocabulary?
What is the distribution of terms in the vocabulary?
A commonly held thesis is that terms are distributed
according to ZZpf’s law [26], by which the ith most
frequently occurring term has probability proportional
to i-a, where cr is a positive constant; for the various
indexing/searching goals mentioned here, how can we
exploit. Zipf’s law? What fraction of the terms typically
identify a document reasonably well? Are there many
proper nouns? What terms should be handled through
an index and what terms through other means?

These considerations lead to techniques that exploit
the terms statistics in the corpus. A standard first step
in this direction is the use of negative dictionaries (also
known as stop-word lists) - a list of words that are
not indexed because they occur too commonly in the
corpus. Prepositions and articles are often included in
such negative dictionaries; a typical negative dictionary
in current practice might include several hundred terms.
There are however tradeoffs in using this technique:
while it improves precision on the vast majority of
queries, it becomes very difficult to search for the string
“to be or not to be”. Further, the contents of a negative
dictionary are highly dependent on the corpus - for
instance, “can” is typically a stop-word, except perhaps
in a corpus of documents on waste management and
recycling. This issue looms large in searching using
categories and clusters, as discussed below.

A related technique is stemming: it is common to re-
duce search and index terms to their etymological roots
so that, for instance, a search for “dentistry” returns
documents containing the term “dental”. This is typ-
ically implemented using a set of rules derived from
the grammatical structure of the language. In prac-
tice, these rules are far from perfect (it has been re-
ported [5] for instance that documents from mathemat-
ics and anesthesiology were often confused because of

13

the occurrence of “number” in both fields, with differ-
ent meanings of course).

We have discussed above how retrieval systems may
treat multiple search terms in various ways. In general,
retrieval systems will assign a score to the degree to
which a document in the corpus matches the query.
This score may combine the number of times each
search term occurs in the document, the frequency of
occurrence in the document relative to the frequency in
the corpus, and possibly the relative order in which the
user typed in the search terms. The formula for such
combinations is typically a mixture of statistical theory
and experimental tuning. One idea [20] is to consider
the lexical affinity of search terms: two search terms
that are adjacent in the list of search terms, for instance,
score higher in a document in which they occur close to
each other (say, within five words).

One approach to improving precision in text re-
trieval is to use categorized search: each document is
assigned to one or more categories. Typically, the cat-
egories are described by descriptive names; a user may
then restrict their search to one of the categories. In
the Yahoo! search directory for the web, for instance,
the top-level categorization partitions documents into
categories such as Arts, Business and Economy, Gov-
ernment, etc. Frequently (as in the case of Yahoo!), the
categories are hierarchically organized: each category
is further divided into sub-categories. One issue that
arises is that in hierarchical categories, the importance
of a term for searching depends on the position in the
hierarchy. For instance, the term “computer” is useful
in deciding whether a document should lie in the cate-
gory “computer science”; within that category, though,
it is essentially useless at distinguishing sub-categories
and can be considered a stop-word.

How should the categories be chosen so as to
improve the relevance of the documents returned by
the search? To being with, the categories should be
chosen in a manner that is intuitive to the anticipated
user-population (rather than to the person designing
the system). Next, the categories should be reasonably
balanced: a categorization in which a small set of
categories contains most of the documents is not likely
to be as useful as a balanced taxonomy. Finally, the
categories should “span” the corpus in the following
sense: it is not very useful to have two categories that
are very similar to each other (this actually makes it
harder for the user to decide which category to select
when searching).

A typical algorithmic operation in building and
maintaining taxonomies is clustering. The idea is to
partition the document into clusters of closely-related
documents. One consequence is that the categorization

need no longer be static (as above); instead, clustering
partitions the documents into related clusters each
of which may be described, perhaps, by the terms
most frequently occurring in the cluster. (This may
not always be the most intuitive representation from
the standpoint of the user, but preliminary experience
with the technique is encouraging [5].) Further, the
clustering can change, as new documents are added (and
old ones deleted); thus in a corpus of news articles,
the clustering may change as the focus of the news
changes. Such dynamic clustering, again, could be
hierarchical [5]. W e will explore this idea in greater
detail in 3 3 below.

The final basic idea we discuss is that of relevance
feedback. Consider a user who enters a query into a
document retrieval system. The system first returns a
small number of matching documents; the user scans
these, marking each document as “relevant” or “irrel-
evant”. The system then uses this feedback from the
user to formulate and launch a new query that better
matches what the user is seeking. This is an interactive
process, and intuitively leads to increasing precision and
recall. A possible implementation might be to extract
the t#erms most commonly occurring in the documents
marked “relevant” by the user, and add them to the set
of search terms in the query. Other, more sophisticated
implementations come from techniques in 5 3 below.

3 Vector space models.

Many of the text document search operations in f 2 are
conveniently performed using the vector-space represen-
tatzon of documents. The added advantage of this rep-
resentation is tha.t it can be extended to more general
objects that include, for instance, images and video.

We begin with a simple vector-space representation
of m text documents in a corpus. Let n denote the
number of terms in the vocabulary. Consider an n x m
matrix A, whose entry aij indicates the presence or
absence of the term i in document j. The entry is 0 if
the term does not occur in the corresponding document,
and some non-zero value if it does. A great deal of
theoretical and empirical attention has been devoted
to studying the non-zero value that makes up this
entry: in the simplest form it is 1 whenever the term
occurs at least once. More generally, the frequency
of occurrence (or some function of the frequency) may
be used. In more sophisticated versions, the relative
frequencies of the term in the document and in the
corpus may be combined in some form to determine
aij; such combinations are sensitive to changes in the
corpus (addition/deletion of documents). Ideally, one
should not have to update the entire representation
frequently, as the corpus changes. Each document

14

thus becomes a point in n-dimensional space. A query
can also be thought of as a point in n-dimensional
SpS.Ce, so that retrieval becomes a matter of finding
t#he document points in the space that are closest
to the query The number of retrieved points varies,
but is typically a quantity a user can handle at one
time (say, in the neighborhood of 8 to 16 documents).
Considerable effort then goes into finding the “right”
distance function in this vector space.

The vector-space approach is generally ntt#ributed
to Luhn, and was popularized by Salton in the Cornell
SMART system [3]. The number of dimensions in the
representation could be tens of thousands, which makes
it challenging to perform the near-neighbor computation
mentioned above. At the time of this writing most
systems will, at query time, compute the distance from
the query to every document, and then output the
closest documents.

GOAL 3. To find a near(est)-neighbor seazh procedure
in “very high” dimensions that requares (an the worst

case) fewer than n distance computations.

A number of solutions have been proposed for this prob-
lem in the literature [25], but none can get below n
comparisons in the worst case; in fact, we know of no
method that uses fewer than n comparisons even when
the inputs are drawn from an arbitrary probability dis-
tribution. Some empirical success has been observed in
experiments by Hafner and Upfal [16] with the QBIC
system. A robust, distribution-independent probabilis-
tic analysis would be a good first step.

GOAL 4. To find a near(est)-neighbor search procedure
in “very high” dimensions that requires an expected
number of comparisons that is smaller than n, when the
poants and querzes are drawn from an arbatrary but fixed

probabzlity dzstribution.

Notice that several of the operations discussed in
3 2, e.g., indexing, clustering and relevance feedback
all have natural geometric interpretations in the vector-
space model. Consider for instance relevance feedback:
the user’s feedback may be used as follows. Let q denote
the initial query vector. Let D denote the subset of the
retrieved documents that the user marked as relevant,
and D’ the subset marked as irrelevant. Then relevance
feedback results in a new query 9’ given by

q’=q+C-i--d- cd],
&D dc$D’

where all the sums are n-dimensional vector sums, and
C is a well-chosen “weighting” constant.

Clustering and categorization, too, have natural
geometric interpretations: we are clustering points in

n-space. The difficulty in practice, though, is finding
the right criteria for clustering - if two documents
are “close” to each other from the user’s standpoint,
what criterion for clustering keeps them together in
automated clustering? There has been considerable
discussion of this in the literature [5, 231, and the
answers are not very clear. This is related to the issue
of the “right” distance measure for measuring proximity
between points in the vector space, but automated
clustering raises additional issues. How does one ensure
that the clusters remain reasonably balanced?

GOAL 5. To devise generic procedures fOT clustering
documen.ts in a vector space with eficient implemen-
tatzons.

Experience shows that automated categorization is
very corpus-dependent. Chekuri et al. [4], for instance,
report experiments on automatically categorizing web
documents according to the broad categories at the top-
level of Yahoo!. They note that the results depend sub-
stantially on the “proximity” of the categories them-
selves - for instance, documents from “Arts” were more
likely to be misclassified under “Entertainment” than
with other pairs of categories, due to the heavy overlap
of these categories. Further, they note, the wide variety
of styles and quality of authorship on the web can easily
confuse a categorizer. On the web it is a common prac-
tice to insert spurious terms (often in large numbers)
into a document, with the intent of (mis)leading search
engines to point to the document when given commonly-
asked queries (these are typically commercial sites). Is-
sues such as these show that the web is very different
from the scholarly and journalistic corpora that have
been the primary domain for experimental information
retrieval. At a pragmatic level, it appears that cate-
gorizing the web will require very powerful tools and
perhaps substantial human intervention (the Yahoo! di-
rectory is currently created manually by a team of on-
tologists; the InfoSeek directory, on the other hand, is
reported to he automatically generated).

3.1 Representing multimedia objects. A major
advantage of the vector-space representation is that it
is not specific to text documents; in fact it is used in
virtually all current multimedia retrieval systems. The
main idea is that instead of terms, we now represent the
presence/absence of a set of features that are extracted
from the object. In an image one might, for instance,
record for each primary color the average density of that
color; each color might become an axis in the space.
More sophisticated versions of this are used in the Query
By Image Content (or QBIC) system [12], and the
related Photobook system [22]. These systems allow the

15

user to specify an image query using a variety of query
interfaces, and the system returns objects that - to a
human user - appear to be close to the query. Image
similarity systems such as QBIC try to match by image
color composition, texture and shape. For instance, the
user may specify a color mixture as a histogram, and
search for a striped shirt from a fashion catalog. The
crucial words in the notion of similarity are “appear
to be” and “to a human” : human perception will not
in general conform to a clean mathematical notion
of proximity (say, the difference between RGB color
vectors averaged over an image). Indeed, experience
with the QBIC system [12] has shown considerable
variation between simple machine representations and
human perception in the color component alone. Thus
the choice of the distance measure (in the vector space
representation) is especially difficult and important in
such systems. The solution (in practice) is to fine-tune
the system (typically, as “bad examples” are noticed)
until the distance function appears to be right most of
the time. Given the heuristic nature of this process, it is
not surprising that the resulting distance function is (1)
computationally non-trivial, and (2) difficult to capt*ure
in a mathematically clean form. For instance, the
function will not in general obey the triangle inequality;
moreover, if the system allows multiple query interfaces
(say, search by color versus search by shapes) there may
be multiple distance functions involved. The number
of dimensions in these applications may range in the
several hundreds. The lack of the triangle inequality
further complicates Goals 3 and 4 above. For one
of the distance functions in the QBIC system, Fagin
and Stockmeyer [9] have established a semi-trzangle
inequality: given any triangle in the space, the sum of
any two sides is shown to be at least (1 - E) times the
third. The following goal is analogous to Goals 3 and 4
above.

GOAL 6. To devise eficient near-neighbor search algo-

Tii%??ZS gaven the semi-trzangle inequalzty.

In the multimedia search systems currently being
developed an object may consist, for instance, of a
set of ima.ges and some text. A simple approach to
implementing such systems is to rely on text annot.ation.
For instance, AltaVista can search for a text string
appearing in the caption of an html “image” tag. This
approach works provided images are well-annotated;
if the caption is misplaced, or does not contain the
keywords the user enters, it fails.

In the more sophisticated systems in development,
the user ma.y use any combination of text/image/video
search. The system must then combine the results of
the search by each of the query media. Fagin [lo]

gives some algorithms for combining such search results
according a fixed combination rule. More generally, the
user may at query time give a weighting with which
to combine the results of such searches. In the vector-
space representation, this may be thought of as near-
neighbor searches in which the distance function is
derived from a convex combination of two vector spaces,
where the weights in the convex combination are given
at query time. We know of no such work even in
simple geometric settings; it appears that for the very
simple case of the Euclidean plane (say, where the Z-
axis can be “stretched” or “compressed” at query time),
the obvious approach of representing the problem in
three dimensions gives a solution (probably not a very
practical one).

GOAL 7. To deuzse algorithms for near-neighbor com-
putataons in whzch the components of the distance func-

tion have weights given at query time.

3.2 Algebraic methods. Given the vector space
representation of objects, it is natural to consider the
use of algebraic methods to facilitate retrieval. An
intriguing technique known as Latent Semantic Indexing

does just this. We revert for a moment to the discussion
of text retrieval, although all our comments here can be
generalized to vector space representations of arbitrary
objects.

The main idea is that vectors representing the doc-
uments are projected down to a new, low-dimensional
space obtained by the singular value decomposition of
the term-document matrix A. This low-dimensional
space is spanned by the eigenvectors of ATA that cor-
respond to the few largest eigenvalues - and thus, pre-
sumably, to the few most striking correlations between
terms. Queries are also projected and processed in this
low-dimensional space. This results not only in great
savings in storage and query time (at the expense of
some considerable preprocessing), but also, according
to empirical evidence reported in the literature, to im-
proved injormatzon. retrieval [1, 7, 81.

Let A be an n x m matrix as before; let the rank of
A be T. Let the singular values of A be g1 > CT~ 2 . . >
ur (not necessarily distinct), i.e., a:,(~;, . . .uF are the
eigenvalues of AAT. The singular value decomposition
of A decomposes it into the product of three matrices
A = UDVT, where D = diag(cT1,. .,a,.) is an T x r
matrix, U = (~1,. . , u,.) is an n x T matrix whose
columns are orthonormal, and V = (111,. . , v,.) is an
m x T matrix which is also column-orthonormal.

LSI works by omitting all but the X: largest singular
values in the above decomposition, for some appropriate
h (here X: is the dimension of the low-dimensional
space alluded to in the informal description above). It

16

should be small enough to enable fast retrieval, and LSI computation; in practice, though, random projec-
large enough to adequately capture the structure of the tion may reduce the sparseness of the document matrix
corpus. Let Dk = diag(Al,. .,A*), uk = (211,. ,uk) to the point where LSI code for sparse matrices cannot
and vk = (vi,. . . , vk). Then be used.

Ak = UkDkVkT GOAL 8. To devise a computationally effective variant
of LSI.

is a matrix of rank h, which is our approximation of A.
The rows of vkr>k above are then used to represent the
documents.

How good is this approximation? The following
well-known theorem gives us some idea.

THEOREM 3.1. (E&art and Young, see [15/.) Among
all n x m matrices C of rank at most k, Ak as the one
that mznimzzes]]A- Cjj2 = xi,j(a;j - cij)‘.

Therefore, LSI preserves (to the extent possible)
the relative distances (and hence, presumably, the re-
trieval capabilities) in the term-document matrix while
projecting it to a lower-dimensional space. However,
the literature [l, 6, 7, 81 goes beyond suggesting LSI
as merely a dimension-reduction technique: in fact, the

4 A computational meta-question

The above sections focused on a number of ways
of speeding up existing information retrieval systems
through improved algorithms. However, there is a com-
pelling argument that users of current web search en-
gines might be willing to sacrifice some of the retrieval
speed for the sake of better relevance in what they re-
trieve. In an extreme version of this view, one might
argue that the bottleneck in information retrieval cur-
rently is not computational, but rather that of better
determining the relevance of a document to a query.
This prompts the following “ultimate” question, which
is admittedly more of a thought experiment than a sys-
tem waiting to be built:

reported experience is that LSI tends to bring together
documents that are semantically related. Thus, a search

GOAL 9. Given “infinite” computational power, can

for “car” might retrieve documents containing the term
one improve the accuracy to which we compute the

“automobile” , even if they did not contain the term
Teleuance of a document to a query?

“car” Despite the wealth of empirical evidence SUP- A positive answer to this question would shift the bottle-

porting such improved semantic retrieval from LSI, The- neck in information retrieval from relevance judgements
orem 3.1 above only suggests that LSI doesn’t do serious
damage during dimension reduction. Can one theoreti-

and human factors (which are intangible to algorithms
researchers), to algorithms and computation.

tally explain the observed improved retrieval of LSI?
In recent work, Papadimitriou et al. [21] show that 5 Current work and further resources.

under a probabilistic model for document generation,
LSI will cluster documents by topic. They also point out

In this section we give an overview of resources for find-

that if distance preservation during dimension reduction
ing out about current work on information retrieval.

were the only criterion, then projecting the documents
Two classic texts on LSI are the books by van Rijs-

down to a random subspace gives a good approximation,
bergen [23] and by Salton [24]. Further detail on al-

and suggest performing LSI after dimension reduction
gorithmic issues can be found in the volume edited by

by random projection. This builds on theorems on ran-
Frakes and Baeza-Yates [13]. The survey of informa-

dom subspace projection due to Johnson and Linden-
tion retrieval by Faloutsos and Oard [ll] is fairly re-

Strauss [14, 181.
cent; Lesk [19] gives a broad historical perspective on

One deterrent to the widespread proliferation of
the evolution of the field.

LSI in commercial systems has been the computational
We next provide an annotated list of information

cost of computing the singular value decomposition on
retrieval URLs on the web; these links are active at the

a large corpus (such as the web). A number of attempts
time of this writing. Many of the articles/books listed

have been made to circumvent this bottleneck. The
below may be accessed through these URLs.

published literature suggests that it is currently diffi-
A good starting point is the home page for ACM’s

cult. to compute the SVD for about 100,090 documents,
special interest group on information retrieval:

and virtually impossible to do this for a million doc-
uments. Intriguingly, though, the web search engine

http://info.sigir.acm.org/sigir/

Excite reportedly uses a variant of LSI, and apparently A comprehensive bibliography may be found in (the
indexes tens of millions of documents. At least in the- URL has been broken into two lines here to fit the
ory [21], random projection speeds up the subsequent column width)

http://www.sils.umich.edu/‘mjpinto/ILS609Page/
Bibliography/IRBibliography.html

A number of pages on the web offer pointers to informa-
tion re.trieval efforts around the world, including multi-
media search. Examples include:

http://ruff.cs.umbc.edu:408O/IR.html
http://www.cs.jhu.edu/‘weiss/glossary.html

http://www-ir.inf.ethz.ch/ir_groups.html

More resources may be found (with some difficulty!)
using web search engines. The QBIC project may be

found at:

http://wwwqbic.almaden.ibm.com/‘qbic/qbic.html

Finally, we mention an announcement of the ConText
system by Oracle corporation, which suggests that pow-
erful new methods in computational linguistics are be-

ing used to build a system purported to give significantly
improved retrieval performance:

http://www.oracle.com

6 Acknowledgements.

I thank Rakesh Agrawal, Soumen Chakrabarti, Chan-

dra Chekuri, Byron Dom, Michael Goldwasser, David
Karger , Daphne Keller , Nimrod Megiddo, Hisao
Tamaki, Eli Upfal, Santosh Vempala and Mark Wegman
for ongoing collaboration and many insightful discus-
sions on various aspects of information retrieval. Spe-
cial thanks to Christos Papadimitriou for teaching me
a great dela about information retrieval, and for many

hours of interesting discussions.

References

PI

PI

131

[41

151

M. W. Berry, S. T. Dumais, and G. W. O’Brien. Us-
ing linear algebra for intelligent information retrieval.
SIAM Review, 37(4), 1995, 573-595, 1995.
M. W. Berry, T. Do, G. W. O’Brien, V. Krishna, and
S. Varadhan. SVDPACKC (Version 1.0) User’s Guide.
University of Tennessee, April 1993.
C. Buckley, A. Singhal, M. Mitra, G. Salton. New Re-
trieval Approaches Using SMART: TREC 4. Proceed-
ings of the Fourth Text Retrieval Conference, National
Institute of Standards and Technology, 1995.
C. Chekuri, M. Goldwasser, P. Raghavan aud E. Up-
fal. Automated categorization on world-wide web doc-
uments. Unpublished manuscript, 1996.
D. R. Cutting, J. 0. Pedersen, D. R. Karger and
J. W. Tukey. Scatter/Gather: A Cluster-based Ap-
proach to Browsing Large Document Collections. Pro-
ceedings of ACM SIGIR. 318-329. 1992.

PI

[71

P31

PI

PO1

Pll

1121

1131

fl41

1151

P71

P31

t191

WI

WI

17

S. Deerwester, S. T. Dumais, T.K. Landauer,
G.W. Fumas, and R.A. Harshman. Indexing by latent
semantic analysis. Journal of the Society for Informa-
tion Science, 41(6), 391-407, 1990.
S.T. Dumais, G.W. Furnas, T.K. Landauer and
S. Deerwester. Using latent semantic analysis to im-
prove information retrieval. In Proceedings of CH1’88:
Conference on Human Factors in Computing, New
York: ACM, 281-285, 1988.
S.T. Dumais. Improving the retrieval of information
from external sources. Behavior Research Methods,
Instruments and Computers, 23(2), 229-236, 1991.
R. Fagin and L. Stockmeyer. Relaxing the triangle
inequality ix1 pattern matching. IBM Research Report
RJ 10031, June 1996.
R. Fagin. Combining fuzzy information from multiple
systems. Proceedings of the 15th ACM Symp. on
Principles of Database Systems, Montreal, 1996, pp.
216-226.
C. Faloutsos and D. W. Oard. A Survey of Information
Retrieval and Filtering Methods. Dept. of Computer
Science, Univ. of Maryland, August 1995.
M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele and P. Yanker. Query by im-
age and video content: The QBIC system. IEEE Com-
puter, 28, 23-32, 1995.
W. Frakes and R. Baeza-Yates, editors. Information
Retrieval: Data Structures and Algorithms. Prentice-
Hall, 1992.
P. Frank1 and H. Maebara. The Johnson-Lindenstrauss
Lemma and the Sphericity of some graphs, J. Comb.
Theory B 44 (1988), 355-362.
G. Golub and C. Reinsch. Handbook for matrix compu-
tation II, Linear Algebra. Springer-Verlag, New York,
1971.
J. Hafner and E. Upfal. Nearest neighbors in high di-
mensions using random sampling: theory and experi-
ments. Unpublished manuscript, 1996.
D. Harman. Overview of the Fourth Text REtrieval
Conference (TREC-4). Proceedings of the Fourth Text
Retrieval Conference, National Institute of Standards
and Technology, 1995.
W. B. Johnson and J. Lindenstrauss. Extensions of
Lipshitz mapping into Hilbert space, Contemp. Math.
26 (1984), 189-206.
M. Lesk. The Seven Ages of Information Retrieval.
Proceedings of the Conference for the 50th anniversary
of As We May Think, 12-14, 1995. Available at the time
of this writing as

http://community.bellcore.com/lesk/ages/ages.html

Y. Maarek and F. Smadja. Full text indexing based on
lexical relations. an application: Software libraries. In
Proceedings of SIGIR’89, N.Belkin and C.van Rijsber-
gen, Eds., ACM Press, 198-206, 1989.
C. H. Papadimitriou, P. Raghavan, H. Tamaki and
S. Vempala. Latent Semantic Indexing: a probabilistic

analysis. Unpublished manuscript.
1221 A. Pentland, R. W. Picard and S. Sclaroff. Photo-

book: Tools for Content-Based Manipulation of Image

Databases, Proc. Storage adn Retrieval for Image and

Video Databases II, 2, SPIE, 34-47.

[23] C. J. van Rijsbergen. Information Retrieval. Butter-
worths, London 1979.

[24] G. Salton. Automatic Text Processing. Reading, MA:

Addison Wesley, 1989.
[25] H. Samet. The design and analysis of spatial data

structures. Addison-Wesley, 1989.

[ZS] G.K. Zipf. Human Behavior and the Principle of Least
Effort: an Introduction to Human Ecology. Addison-

Wesley, 1949.

