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Abstract 

We give an overview of some algorithmic problems arising 

in the representation of text/image/multimedia objects in a 

form amenable to automated searching, and in conducting 

these searches efficiently. These operations are central to 

information retrieval and digital library systems. 

tional linguistics; (3) user interfaces and user models; 
(4) network and distributed retrieval issues including 
server/network performance and load balancing; (5) se- 
curity, access control and rights management. 

1 Introduction. 

The design and implementation of information retrieval 
systems is concerned with methods for storing, orga- 
nizing aud retrieving information from a collection of 
documents. The quality of such a system is measured 
by how useful it is to the typical users of the system. 
The role of the user in this process cannot be underes- 
timated: for instance, a scholar seeking a research pa- 
per from a corpus of specialist articles is very different 
from a consumer seeking a good small car to buy, on 
the world-wide web. The availability of hypermedia has 
opened up new paradigms for seeking information: a 
user may do a simple keyword search, or may search 
through a hierarchical index of categories, or may fol- 
low hyperlinks through a se.quence of related documents 
(commonly referred to as ‘Lbrowsing”) - or may use 
some combination of these. 

In the remainder of this paper, we will refer to 
a collection of objects as a corpus. Documents are 
a particular type of object consisting of a sequence 
of terms; by a term we typically mean a word, but 
more generally a sequence of words that tend to occur 
together (e.g., “Massachusets Institute of Technology”). 
For a corpus consisting of text documents, a query is a 
set of terms. 

We have noted above that the eventual test for an 
information retrieval system comes from user satisfac- 
tion. Can this be translated to something more quanti- 
tative that can be studied experimentally? What does 
this translat,e to in terms of the component algorithms? 

The source of the documents also important: a 
corpus of scholarly articles may contain a great deal of 
specialist information, but will generally enjoy a level 
of authorship and consistency of style not found in 
less structured corpora (such as the world-wide web, 
where the variegated content and style present serious 
obstacles to retrieval). 

In this paper we focus on algorithmic issues arising 
in two aspects of information retrieval systems: (1) rep- 
resenting objects ’ in a form amenable to automated 
searching, and (2) efficiently searching such represen- 
tations. We do not consider in detail algorithmic is- 
sues arising in the following other important aspects of 
information retrieval systems: (1) file structures and 
database population and maintenance; (2) computa- 

Besides retrieval speed (and, less obvious to the 
user, database population or “preprocessing” speed), 
there are two common quantitative measures for tra- 
ditional information retrieval systems. Consider a set- 
ting in which a user enters a query into the system, and 
receives a set of documents in return. The precasion 
of the system on this query is the fraction of the re- 
turned documents that are relevant to the user’s query. 
The recall of the system on this query is the fraction 
of relevant documents in the underlying corpus that are 
returned. A system can trivially provide perfect recall 
simply by returning all the documents in the corpus on 
every query; but this leads to poor precision. A wealth 
of experimental evidence suggests that in general, there 
is a tradeoff between the precision and the recall that a 
system can provide. 
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*We will in general speak of “objects” that are understood 
to be text, images, video or some combination thereof as in 
multimediadocuments; we will use the simpler term “documents” 
to mean text alone. 

Some noteworthy issues; (1) in the above, “rele- 
vance” is thought of as a binary attribute: a document 
in the corpus is either relevant to the query, or it is not; 
(2) when reporting experimental research, it is common 
to average the precision and recall figures over a large 
number of queries; (3) in benchmark suites such as the 

TREC series [17], it is typical to provide a corpus and 
a set. of queries; in addition there is a set of relevance 
judgements from an expert panel giving, for each query, 
the set of documents in the corpus deemed to be rele- 
vant to that query. 

Clearly the operations we have chosen to con- 

I 1 



12 

sider in this paper - structures for storing objects, 
and searching these structures - will influence system 
speed/scalability, precision and recall. In 5 2 we review 
the most basic algorithmic operations found in virtu- 
ally all retrieval systems. In § 3 we study a suite of 
algorithms for storing and retrieving objects in the gen- 
eral setting of vector space mdels. In 5 5 we review the 
current state of art in the systems most commonly in 
use, especially for web search. 

2 Basic algorithmic operations. 

In this section we discuss some ideas that pervade most 
information retrieval systems. The first three - in- 
dexing, negative dictionaries (also known as “stop word 
lists”) and stemming - exist in some form in virtually 
all systems. For the remainder of this section, we only 
discuss text retrieval from a corpus of documents. 

Indexing is the most basic mechanism for prepar- 
ing a corpus of documents for searching. In the sim- 
plest form the index stores, for every term, a list of all 
documents containing that term. Consider a query con- 
sisting of a set of search terms, stored (for instance) 
in alphabetical order. A simple lookup now retrieves 
all documents containing at least one of the search 
terms. However, this algorithmically expeditious ap- 
proach leads to poor recall, as users typically do not 
launch a query consisting of a Boolean OR of search 
terms. Far more likely (especially in a large corpus 
such as the web) is a search for documents matching 
a Boolean AND of search terms. One answer would be 
to retrieve the set of documents matching each search 
term, and then take the intersection of the resulting 
sets. One problem with this approach: it may process 
many more documents than appear in the output. More 
generally, it may be desirable for the system to return a 
list of documents ranked by the number of search terms 
occurring in the document, or some variant thereof. 

GOAL 1. To devise efficient algorithms GOT (1) retriev- 
ing the set of documents containing every one of several 

search terms, and (2) f or returning documents contazn- 

ing any of the search terms, ranked by the number of 
search terms that OCCUT in the document. 

It should be stressed, though, that in designing a 
system the algorithm design is intertwined with the wer 
interface, and with an understanding of the target user 
population. For instance, an algorithm that works well 
as the number of search terms goes to infinity is not 
much use if the user interface only allows the user to 
enter 3 search terms (or if the user population is one 
that seldom enters more than, say, 2 terms). 

A more general type of index encodes not only all 
documents containing each search term, but also the 

position of each occurrence of the term in the document. 
This enables such queries as finding all occurrences of 
a string that is not already indexed as a search term 
(for instance, if “Massachusets Institute of Technology” 
were not indexed as a term, we could use such an 
index provided the terms “Massachusets”, “Institute” 
and “Technology” were all indexed with their positions 
recorded). The retrieval system that currently appears 
to support the largest corpus for such queries is Digital’s 
AltaVista. 

GOAL 2. Devise efticient algorithms and index designs 

for supporting moTe complex queries such as string 
queries. 

For an algorithm to succeed at such goals, it is 
essential to understand the underlying corpus. Do 
all documents use the same underlying vocabulary? 
What is the distribution of terms in the vocabulary? 
A commonly held thesis is that terms are distributed 
according to ZZpf’s law [26], by which the ith most 
frequently occurring term has probability proportional 
to i-a, where cr is a positive constant; for the various 
indexing/searching goals mentioned here, how can we 
exploit. Zipf’s law? What fraction of the terms typically 
identify a document reasonably well? Are there many 
proper nouns? What terms should be handled through 
an index and what terms through other means? 

These considerations lead to techniques that exploit 
the terms statistics in the corpus. A standard first step 
in this direction is the use of negative dictionaries (also 
known as stop-word lists) - a list of words that are 
not indexed because they occur too commonly in the 
corpus. Prepositions and articles are often included in 
such negative dictionaries; a typical negative dictionary 
in current practice might include several hundred terms. 
There are however tradeoffs in using this technique: 
while it improves precision on the vast majority of 
queries, it becomes very difficult to search for the string 
“to be or not to be”. Further, the contents of a negative 
dictionary are highly dependent on the corpus - for 
instance, “can” is typically a stop-word, except perhaps 
in a corpus of documents on waste management and 
recycling. This issue looms large in searching using 
categories and clusters, as discussed below. 

A related technique is stemming: it is common to re- 
duce search and index terms to their etymological roots 
so that, for instance, a search for “dentistry” returns 
documents containing the term “dental”. This is typ- 
ically implemented using a set of rules derived from 
the grammatical structure of the language. In prac- 
tice, these rules are far from perfect (it has been re- 
ported [5] for instance that documents from mathemat- 
ics and anesthesiology were often confused because of 
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the occurrence of “number” in both fields, with differ- 
ent meanings of course). 

We have discussed above how retrieval systems may 
treat multiple search terms in various ways. In general, 
retrieval systems will assign a score to the degree to 
which a document in the corpus matches the query. 
This score may combine the number of times each 
search term occurs in the document, the frequency of 
occurrence in the document relative to the frequency in 
the corpus, and possibly the relative order in which the 
user typed in the search terms. The formula for such 
combinations is typically a mixture of statistical theory 
and experimental tuning. One idea [20] is to consider 
the lexical affinity of search terms: two search terms 
that are adjacent in the list of search terms, for instance, 
score higher in a document in which they occur close to 
each other (say, within five words). 

One approach to improving precision in text re- 
trieval is to use categorized search: each document is 
assigned to one or more categories. Typically, the cat- 
egories are described by descriptive names; a user may 
then restrict their search to one of the categories. In 
the Yahoo! search directory for the web, for instance, 
the top-level categorization partitions documents into 
categories such as Arts, Business and Economy, Gov- 
ernment, etc. Frequently (as in the case of Yahoo!), the 
categories are hierarchically organized: each category 
is further divided into sub-categories. One issue that 
arises is that in hierarchical categories, the importance 
of a term for searching depends on the position in the 
hierarchy. For instance, the term “computer” is useful 
in deciding whether a document should lie in the cate- 
gory “computer science”; within that category, though, 
it is essentially useless at distinguishing sub-categories 
and can be considered a stop-word. 

How should the categories be chosen so as to 
improve the relevance of the documents returned by 
the search? To being with, the categories should be 
chosen in a manner that is intuitive to the anticipated 
user-population (rather than to the person designing 
the system). Next, the categories should be reasonably 
balanced: a categorization in which a small set of 
categories contains most of the documents is not likely 
to be as useful as a balanced taxonomy. Finally, the 
categories should “span” the corpus in the following 
sense: it is not very useful to have two categories that 
are very similar to each other (this actually makes it 
harder for the user to decide which category to select 
when searching). 

A typical algorithmic operation in building and 
maintaining taxonomies is clustering. The idea is to 
partition the document into clusters of closely-related 
documents. One consequence is that the categorization 

need no longer be static (as above); instead, clustering 
partitions the documents into related clusters each 
of which may be described, perhaps, by the terms 
most frequently occurring in the cluster. (This may 
not always be the most intuitive representation from 
the standpoint of the user, but preliminary experience 
with the technique is encouraging [5].) Further, the 
clustering can change, as new documents are added (and 
old ones deleted); thus in a corpus of news articles, 
the clustering may change as the focus of the news 
changes. Such dynamic clustering, again, could be 
hierarchical [5]. W e will explore this idea in greater 
detail in 3 3 below. 

The final basic idea we discuss is that of relevance 
feedback. Consider a user who enters a query into a 
document retrieval system. The system first returns a 
small number of matching documents; the user scans 
these, marking each document as “relevant” or “irrel- 
evant”. The system then uses this feedback from the 
user to formulate and launch a new query that better 
matches what the user is seeking. This is an interactive 
process, and intuitively leads to increasing precision and 
recall. A possible implementation might be to extract 
the t#erms most commonly occurring in the documents 
marked “relevant” by the user, and add them to the set 
of search terms in the query. Other, more sophisticated 
implementations come from techniques in 5 3 below. 

3 Vector space models. 

Many of the text document search operations in f 2 are 
conveniently performed using the vector-space represen- 
tatzon of documents. The added advantage of this rep- 
resentation is tha.t it can be extended to more general 
objects that include, for instance, images and video. 

We begin with a simple vector-space representation 
of m text documents in a corpus. Let n denote the 
number of terms in the vocabulary. Consider an n x m 
matrix A, whose entry aij indicates the presence or 
absence of the term i in document j. The entry is 0 if 
the term does not occur in the corresponding document, 
and some non-zero value if it does. A great deal of 
theoretical and empirical attention has been devoted 
to studying the non-zero value that makes up this 
entry: in the simplest form it is 1 whenever the term 
occurs at least once. More generally, the frequency 
of occurrence (or some function of the frequency) may 
be used. In more sophisticated versions, the relative 
frequencies of the term in the document and in the 
corpus may be combined in some form to determine 
aij; such combinations are sensitive to changes in the 
corpus (addition/deletion of documents). Ideally, one 
should not have to update the entire representation 
frequently, as the corpus changes. Each document 



14 

thus becomes a point in n-dimensional space. A query 
can also be thought of as a point in n-dimensional 
SpS.Ce, so that retrieval becomes a matter of finding 
t#he document points in the space that are closest 
to the query The number of retrieved points varies, 
but is typically a quantity a user can handle at one 
time (say, in the neighborhood of 8 to 16 documents). 
Considerable effort then goes into finding the “right” 
distance function in this vector space. 

The vector-space approach is generally ntt#ributed 
to Luhn, and was popularized by Salton in the Cornell 
SMART system [3]. The number of dimensions in the 
representation could be tens of thousands, which makes 
it challenging to perform the near-neighbor computation 
mentioned above. At the time of this writing most 
systems will, at query time, compute the distance from 
the query to every document, and then output the 
closest documents. 

GOAL 3. To find a near(est)-neighbor seazh procedure 
in “very high” dimensions that requares (an the worst 

case) fewer than n distance computations. 

A number of solutions have been proposed for this prob- 
lem in the literature [25], but none can get below n 
comparisons in the worst case; in fact, we know of no 
method that uses fewer than n comparisons even when 
the inputs are drawn from an arbitrary probability dis- 
tribution. Some empirical success has been observed in 
experiments by Hafner and Upfal [16] with the QBIC 
system. A robust, distribution-independent probabilis- 
tic analysis would be a good first step. 

GOAL 4. To find a near(est)-neighbor search procedure 
in “very high” dimensions that requires an expected 
number of comparisons that is smaller than n, when the 
poants and querzes are drawn from an arbatrary but fixed 

probabzlity dzstribution. 

Notice that several of the operations discussed in 
3 2, e.g., indexing, clustering and relevance feedback 
all have natural geometric interpretations in the vector- 
space model. Consider for instance relevance feedback: 
the user’s feedback may be used as follows. Let q denote 
the initial query vector. Let D denote the subset of the 
retrieved documents that the user marked as relevant, 
and D’ the subset marked as irrelevant. Then relevance 
feedback results in a new query 9’ given by 

q’=q+C-i--d- cd], 
&D dc$D’ 

where all the sums are n-dimensional vector sums, and 
C is a well-chosen “weighting” constant. 

Clustering and categorization, too, have natural 
geometric interpretations: we are clustering points in 

n-space. The difficulty in practice, though, is finding 
the right criteria for clustering - if two documents 
are “close” to each other from the user’s standpoint, 
what criterion for clustering keeps them together in 
automated clustering? There has been considerable 
discussion of this in the literature [5, 231, and the 
answers are not very clear. This is related to the issue 
of the “right” distance measure for measuring proximity 
between points in the vector space, but automated 
clustering raises additional issues. How does one ensure 
that the clusters remain reasonably balanced? 

GOAL 5. To devise generic procedures fOT clustering 
documen.ts in a vector space with eficient implemen- 
tatzons. 

Experience shows that automated categorization is 
very corpus-dependent. Chekuri et al. [4], for instance, 
report experiments on automatically categorizing web 
documents according to the broad categories at the top- 
level of Yahoo!. They note that the results depend sub- 
stantially on the “proximity” of the categories them- 
selves - for instance, documents from “Arts” were more 
likely to be misclassified under “Entertainment” than 
with other pairs of categories, due to the heavy overlap 
of these categories. Further, they note, the wide variety 
of styles and quality of authorship on the web can easily 
confuse a categorizer. On the web it is a common prac- 
tice to insert spurious terms (often in large numbers) 
into a document, with the intent of (mis)leading search 
engines to point to the document when given commonly- 
asked queries (these are typically commercial sites). Is- 
sues such as these show that the web is very different 
from the scholarly and journalistic corpora that have 
been the primary domain for experimental information 
retrieval. At a pragmatic level, it appears that cate- 
gorizing the web will require very powerful tools and 
perhaps substantial human intervention (the Yahoo! di- 
rectory is currently created manually by a team of on- 
tologists; the InfoSeek directory, on the other hand, is 
reported to he automatically generated). 

3.1 Representing multimedia objects. A major 
advantage of the vector-space representation is that it 
is not specific to text documents; in fact it is used in 
virtually all current multimedia retrieval systems. The 
main idea is that instead of terms, we now represent the 
presence/absence of a set of features that are extracted 
from the object. In an image one might, for instance, 
record for each primary color the average density of that 
color; each color might become an axis in the space. 
More sophisticated versions of this are used in the Query 
By Image Content (or QBIC) system [12], and the 
related Photobook system [22]. These systems allow the 
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user to specify an image query using a variety of query 
interfaces, and the system returns objects that - to a 
human user - appear to be close to the query. Image 
similarity systems such as QBIC try to match by image 
color composition, texture and shape. For instance, the 
user may specify a color mixture as a histogram, and 
search for a striped shirt from a fashion catalog. The 
crucial words in the notion of similarity are “appear 
to be” and “to a human” : human perception will not 
in general conform to a clean mathematical notion 
of proximity (say, the difference between RGB color 
vectors averaged over an image). Indeed, experience 
with the QBIC system [12] has shown considerable 
variation between simple machine representations and 
human perception in the color component alone. Thus 
the choice of the distance measure (in the vector space 
representation) is especially difficult and important in 
such systems. The solution (in practice) is to fine-tune 
the system (typically, as “bad examples” are noticed) 
until the distance function appears to be right most of 
the time. Given the heuristic nature of this process, it is 
not surprising that the resulting distance function is (1) 
computationally non-trivial, and (2) difficult to capt*ure 
in a mathematically clean form. For instance, the 
function will not in general obey the triangle inequality; 
moreover, if the system allows multiple query interfaces 
(say, search by color versus search by shapes) there may 
be multiple distance functions involved. The number 
of dimensions in these applications may range in the 
several hundreds. The lack of the triangle inequality 
further complicates Goals 3 and 4 above. For one 
of the distance functions in the QBIC system, Fagin 
and Stockmeyer [9] have established a semi-trzangle 
inequality: given any triangle in the space, the sum of 
any two sides is shown to be at least (1 - E) times the 
third. The following goal is analogous to Goals 3 and 4 
above. 

GOAL 6. To devise eficient near-neighbor search algo- 

Tii%??ZS gaven the semi-trzangle inequalzty. 

In the multimedia search systems currently being 
developed an object may consist, for instance, of a 
set of ima.ges and some text. A simple approach to 
implementing such systems is to rely on text annot.ation. 
For instance, AltaVista can search for a text string 
appearing in the caption of an html “image” tag. This 
approach works provided images are well-annotated; 
if the caption is misplaced, or does not contain the 
keywords the user enters, it fails. 

In the more sophisticated systems in development, 
the user ma.y use any combination of text/image/video 
search. The system must then combine the results of 
the search by each of the query media. Fagin [lo] 

gives some algorithms for combining such search results 
according a fixed combination rule. More generally, the 
user may at query time give a weighting with which 
to combine the results of such searches. In the vector- 
space representation, this may be thought of as near- 
neighbor searches in which the distance function is 
derived from a convex combination of two vector spaces, 
where the weights in the convex combination are given 
at query time. We know of no such work even in 
simple geometric settings; it appears that for the very 
simple case of the Euclidean plane (say, where the Z- 
axis can be “stretched” or “compressed” at query time), 
the obvious approach of representing the problem in 
three dimensions gives a solution (probably not a very 
practical one). 

GOAL 7. To deuzse algorithms for near-neighbor com- 
putataons in whzch the components of the distance func- 

tion have weights given at query time. 

3.2 Algebraic methods. Given the vector space 
representation of objects, it is natural to consider the 
use of algebraic methods to facilitate retrieval. An 
intriguing technique known as Latent Semantic Indexing 

does just this. We revert for a moment to the discussion 
of text retrieval, although all our comments here can be 
generalized to vector space representations of arbitrary 
objects. 

The main idea is that vectors representing the doc- 
uments are projected down to a new, low-dimensional 
space obtained by the singular value decomposition of 
the term-document matrix A. This low-dimensional 
space is spanned by the eigenvectors of ATA that cor- 
respond to the few largest eigenvalues - and thus, pre- 
sumably, to the few most striking correlations between 
terms. Queries are also projected and processed in this 
low-dimensional space. This results not only in great 
savings in storage and query time (at the expense of 
some considerable preprocessing), but also, according 
to empirical evidence reported in the literature, to im- 
proved injormatzon. retrieval [ 1, 7, 81. 

Let A be an n x m matrix as before; let the rank of 
A be T. Let the singular values of A be g1 > CT~ 2 . . > 
ur (not necessarily distinct), i.e., a:,(~;, . . .uF are the 
eigenvalues of AAT. The singular value decomposition 
of A decomposes it into the product of three matrices 
A = UDVT, where D = diag(cT1,. .,a,.) is an T x r 
matrix, U = (~1,. . , u,.) is an n x T matrix whose 
columns are orthonormal, and V = (111,. . , v,.) is an 
m x T matrix which is also column-orthonormal. 

LSI works by omitting all but the X: largest singular 
values in the above decomposition, for some appropriate 
h (here X: is the dimension of the low-dimensional 
space alluded to in the informal description above). It 
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should be small enough to enable fast retrieval, and LSI computation; in practice, though, random projec- 
large enough to adequately capture the structure of the tion may reduce the sparseness of the document matrix 
corpus. Let Dk = diag(Al,. .,A*), uk = (211,. ,uk) to the point where LSI code for sparse matrices cannot 
and vk = (vi,. . . , vk). Then be used. 

Ak = UkDkVkT GOAL 8. To devise a computationally effective variant 
of LSI. 

is a matrix of rank h, which is our approximation of A. 
The rows of vkr>k above are then used to represent the 
documents. 

How good is this approximation? The following 
well-known theorem gives us some idea. 

THEOREM 3.1. (E&art and Young, see [15/.) Among 
all n x m matrices C of rank at most k, Ak as the one 
that mznimzzes ]]A- Cjj2 = xi,j(a;j - cij)‘. 

Therefore, LSI preserves (to the extent possible) 
the relative distances (and hence, presumably, the re- 
trieval capabilities) in the term-document matrix while 
projecting it to a lower-dimensional space. However, 
the literature [l, 6, 7, 81 goes beyond suggesting LSI 
as merely a dimension-reduction technique: in fact, the 

4 A computational meta-question 

The above sections focused on a number of ways 
of speeding up existing information retrieval systems 
through improved algorithms. However, there is a com- 
pelling argument that users of current web search en- 
gines might be willing to sacrifice some of the retrieval 
speed for the sake of better relevance in what they re- 
trieve. In an extreme version of this view, one might 
argue that the bottleneck in information retrieval cur- 
rently is not computational, but rather that of better 
determining the relevance of a document to a query. 
This prompts the following “ultimate” question, which 
is admittedly more of a thought experiment than a sys- 
tem waiting to be built: 

reported experience is that LSI tends to bring together 
documents that are semantically related. Thus, a search 

GOAL 9. Given “infinite” computational power, can 

for “car” might retrieve documents containing the term 
one improve the accuracy to which we compute the 

“automobile” , even if they did not contain the term 
Teleuance of a document to a query? 

“car” Despite the wealth of empirical evidence SUP- A positive answer to this question would shift the bottle- 

porting such improved semantic retrieval from LSI, The- neck in information retrieval from relevance judgements 
orem 3.1 above only suggests that LSI doesn’t do serious 
damage during dimension reduction. Can one theoreti- 

and human factors (which are intangible to algorithms 
researchers), to algorithms and computation. 

tally explain the observed improved retrieval of LSI? 
In recent work, Papadimitriou et al. [21] show that 5 Current work and further resources. 

under a probabilistic model for document generation, 
LSI will cluster documents by topic. They also point out 

In this section we give an overview of resources for find- 

that if distance preservation during dimension reduction 
ing out about current work on information retrieval. 

were the only criterion, then projecting the documents 
Two classic texts on LSI are the books by van Rijs- 

down to a random subspace gives a good approximation, 
bergen [23] and by Salton [24]. Further detail on al- 

and suggest performing LSI after dimension reduction 
gorithmic issues can be found in the volume edited by 

by random projection. This builds on theorems on ran- 
Frakes and Baeza-Yates [13]. The survey of informa- 

dom subspace projection due to Johnson and Linden- 
tion retrieval by Faloutsos and Oard [ll] is fairly re- 

Strauss [14, 181. 
cent; Lesk [19] gives a broad historical perspective on 

One deterrent to the widespread proliferation of 
the evolution of the field. 

LSI in commercial systems has been the computational 
We next provide an annotated list of information 

cost of computing the singular value decomposition on 
retrieval URLs on the web; these links are active at the 

a large corpus (such as the web). A number of attempts 
time of this writing. Many of the articles/books listed 

have been made to circumvent this bottleneck. The 
below may be accessed through these URLs. 

published literature suggests that it is currently diffi- 
A good starting point is the home page for ACM’s 

cult. to compute the SVD for about 100,090 documents, 
special interest group on information retrieval: 

and virtually impossible to do this for a million doc- 
uments. Intriguingly, though, the web search engine 

http://info.sigir.acm.org/sigir/ 

Excite reportedly uses a variant of LSI, and apparently A comprehensive bibliography may be found in (the 
indexes tens of millions of documents. At least in the- URL has been broken into two lines here to fit the 
ory [21], random projection speeds up the subsequent column width) 



http://www.sils.umich.edu/‘mjpinto/ILS609Page/ 
Bibliography/IRBibliography.html 

A number of pages on the web offer pointers to informa- 
tion re.trieval efforts around the world, including multi- 
media search. Examples include: 

http://ruff.cs.umbc.edu:408O/IR.html 
http://www.cs.jhu.edu/‘weiss/glossary.html 

http://www-ir.inf.ethz.ch/ir_groups.html 

More resources may be found (with some difficulty!) 
using web search engines. The QBIC project may be 

found at: 

http://wwwqbic.almaden.ibm.com/‘qbic/qbic.html 

Finally, we mention an announcement of the ConText 
system by Oracle corporation, which suggests that pow- 
erful new methods in computational linguistics are be- 

ing used to build a system purported to give significantly 
improved retrieval performance: 

http://www.oracle.com 
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