
Package ‘lsa’
September 20, 2011

Title Latent Semantic Analysis

Version 0.63-3

Date 2011-06-26

Author Fridolin Wild

Description The basic idea of latent semantic analysis (LSA) is, that text do have a higher order (=la-
tent semantic) structure which,however, is obscured by word usage (e.g. through the use of
synonyms or polysemy). By using conceptual indices that are
derived statistically via a truncated singular value
decomposition (a two-mode factor analysis) over a given
document-term matrix, this variability problem can be overcome.

Depends R (>= 2.10), Snowball, RWeka

Maintainer Fridolin Wild <f.wild@open.ac.uk>

License GPL (>= 2)

Encoding UTF-8

Repository CRAN

Date/Publication 2011-06-26 14:59:06

R topics documented:
as.textmatrix . 2
associate . 3
corpora . 5
cosine . 5
dimcalc . 7
fold_in . 9
lsa . 10
print.textmatrix . 12
query . 13
sample.textmatrix . 14

1

2 as.textmatrix

stopwords . 16
summary.textmatrix . 16
textmatrix . 17
triples . 19
weightings . 21

as.textmatrix Display a latent semantic space generated by Latent Semantic Analy-
sis (LSA)

Description

Returns a latent semantic space (created by createLSAspace) in textmatrix format: rows are terms,
columns are documents.

Usage

as.textmatrix(LSAspace)

Arguments

LSAspace a latent semantic space generated by createLSAspace.

Details

To allow comparisons between terms and documents, the internal format of the latent semantic
space needs to be converted to a classical document-term matrix (just like the ones generated by
textmatrix() that are of class ‘textmatrix’).

Remark: There are other ways to compare documents and terms using the partial matrices from an
LSA space directly. See (Berry, 1995) for more information.

Value

textmatrix a textmatrix representation of the latent semantic space.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

References

Berry, M., Dumais, S., and O’Brien, G (1995) Using Linear Algebra for Intelligent Information
Retrieval. In: SIAM Review, Vol. 37(4), pp.573–595.

See Also

textmatrix, lsa, fold_in

associate 3

Examples

create some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td, "D3", sep="/"))
write(c("dog", "mouse", "dog"), file=paste(td, "D4", sep="/"))

read files into a document-term matrix
myMatrix = textmatrix(td, minWordLength=1)

create the latent semantic space
myLSAspace = lsa(myMatrix, dims=dimcalc_raw())

display it as a textmatrix again
round(as.textmatrix(myLSAspace),2) # should give the original

create the latent semantic space
myLSAspace = lsa(myMatrix, dims=dimcalc_share())

display it as a textmatrix again
myNewMatrix = as.textmatrix(myLSAspace)
myNewMatrix # should look be different!

compare two terms with the cosine measure
cosine(myNewMatrix["dog",], myNewMatrix["cat",])

compare two documents with pearson
cor(myNewMatrix[,1], myNewMatrix[,2], method="pearson")

clean up
unlink(td, recursive=TRUE)

associate Find close terms in a textmatrix

Description

Returns those terms above a threshold close to the input term, sorted in descending order of their
closeness. Alternatively, all terms and their closeness value can be returned sorted descending.

Usage

associate(textmatrix, term, measure = "cosine", threshold = 0.7)

4 associate

Arguments

textmatrix A document-term matrix.

term The stimulus ’word’.

measure The closeness measure to choose (Pearson, Spearman, Cosine)

threshold Terms being closer than this threshold are going to be returned.

Details

Internally, a complete term-to-term similarity table is calculated, denoting the closeness (calculated
with the specified measure) in its cells. All terms being close above this specified threshold are
returned, sorted by their closeness value. Select a threshold of 0 to get all terms.

Value

termlist A named vector of closeness values (terms as labels, sorted in descending order).

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

textmatrix

Examples

create some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td, "D3", sep="/"))
write(c("dog", "mouse", "dog"), file=paste(td, "D4", sep="/"))

create matrices
myMatrix = textmatrix(td, minWordLength=1)
myLSAspace = lsa(myMatrix, dims=dimcalc_share())
myNewMatrix = as.textmatrix(myLSAspace)

calc associations for mouse
associate(myNewMatrix, "mouse")

clean up
unlink(td, recursive=TRUE)

corpora 5

corpora Corpora (Essay Scoring)

Description

This data sets contain example corpora for essay scoring. A training textmatrix contains files to
construct a latent semantic space apt for grading student essays provided in the essay textmatrix.
In a separate data set, the original human scores are noted down with which the student essays
were graded by a human assessor. The corpora (and human scores) can be loaded by calling
data(corpus_training), data(corpus_essays), or data(corpus_scores). The
objects must already exist before being handed over to e.g. lsa().

Usage

data(corpus_training)
data(corpus_essays)
data(corpus_scores)

Format

Corpora: textmatrix; Scores: table.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

cosine Cosine Measure (Matrices)

Description

Calculates the cosine measure between two vectors or between all column vectors of a matrix.

Usage

cosine(x, y = NULL)

Arguments

x A vector or a matrix (e.g., a document-term matrix).

y Optional: a vector with compatible dimensions to x. If ‘NULL’, all column
vectors of x are correlated.

6 cosine

Details

cosine() calculates a similarity matrix between all column vectors of a matrix x. This matrix
might be a document-term matrix, so columns would be expected to be documents and rows to be
terms.

When executed on two vectors x and y, cosine() calculates the cosine similarity between them.

Value

Returns a n ∗ n similarity matrix of cosine values, comparing all n column vectors against each
other. Executed on two vectors, their cosine similarity value is returned.

Note

The cosine measure is nearly identical with the pearson correlation coefficient (besides a constant
factor) cor(method="pearson"). For an investigation on the differences in the context of
textmining see (Leydesdorff, 2005).

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

References

Leydesdorff, L. (2005) Similarity Measures, Author Cocitation Analysis,and Information Theory.
In: JASIST 56(7), pp.769-772.

See Also

cor

Examples

the cosinus measure between two vectors

vec1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
vec2 = c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
cosine(vec1,vec2)

the cosine measure for all document vectors of a matrix

vec3 = c(0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0)
matrix = cbind(vec1,vec2, vec3)
cosine(matrix)

dimcalc 7

dimcalc Dimensionality Calculation Routines (LSA)

Description

Methods for choosing a ‘good’ number of singular values for the dimensionality reduction in LSA.

Usage

dimcalc_share(share=0.5)
dimcalc_ndocs(ndocs)
dimcalc_kaiser()
dimcalc_raw()
dimcalc_fraction(frac=(1/50))

Arguments

share Optional: a fraction of the sum of the selected singular values to the sum of all
singular values (default: 0.5). Only needed by dimcalc_share.

frac Optional: a fraction of the number of the singular values to be used (default:
1/50th).

ndocs Optional: the number of documents (only needed for dimcalc_ndocs()).

Details

In an LSA process, the diagonal matrix of the singular value decomposition is usually reduced to a
specific number of dimensions (also ‘factors’ or ‘singular values’).

The functions dimcalc_share(), dimcalc_ndocs(), dimcalc_kaiser() and also the
redundant function dimcalc_raw() offer methods to calculate a useful number of singular val-
ues (based on the distribution and values of the given sequence of singular values).

All of them are tightly coupled to the core LSA functions: they generates a function to be executed
by the calling (higher-level) function lsa(). The output function contains only one parameter,
namely s, which is expected to be the sequence of singular values. In lsa(), the code returned is
executed, the mandatory singular values are provided as a parameter within lsa().

The dimensionality calculation methods, however, can still be called directly by adding a second,
separate parameter set: e.g.

dimcalc_share(share=0.2)(mysingularvalues)

The method dimcalc_share() finds the first position in the descending sequence of singular
values s where their sum (divided by the sum of all values) meets or exceeds the specified share.

8 dimcalc

The method dimcalc_ndocs() calculates the first position in the descending sequence of sin-
gular values where their sum meets or exceeds the number of documents.

The method dimcalc_kaiser() calculates the number of singular values according to the
Kaiser-Criterium, i.e. from the descending order of values all values with s[n] > 1 will be
taken. The number of dimensions is returned accordingly.

The method dimcalc_fraction() returns the specified share of the number of singular values.
Per default, 1/50th of the available values will be used and the determined number of singular values
will be returned.

The method dimcalc_raw() return the maximum number of singular values (= the length of s).
It is here only for completeness.

Value

Returns a function that takes the singular values as a parameter to return the recommended number
of dimensions. The expected parameter of this function is

s A sequence of singular values (as produced by the SVD). Only needed when
calling the dimensionality calculation routines directly.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

References

Wild, F., Stahl, C., Stermsek, G., Neumann, G., Penya, Y. (2005) Parameters Driving Effectiveness
of Automated Essay Scoring with LSA. In: Proceedings of the 9th CAA, pp.485-494, Loughborough

See Also

lsa

Examples

create some data
vec1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
vec2 = c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
vec3 = c(0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0)
matrix = cbind(vec1,vec2, vec3)
s = svd(matrix)$d

standard share of 0.5
dimcalc_share()(s)

specific share of 0.9
dimcalc_share(share=0.9)(s)

meeting the number of documents (here: 3)
n = ncol(matrix)

fold_in 9

dimcalc_ndocs(n)(s)

fold_in Ex-post folding-in of textmatrices into an existing latent semantic
space

Description

Additional documents can be mapped into a pre-exisiting latent semantic space without influencing
the factor distribution of the space. Applied, when additional documents must not influence the
calculated existing latent semantic factor structure.

Usage

fold_in(docvecs, LSAspace)

Arguments

LSAspace a latent semantic space generated by createLSAspace.

docvecs a textmatrix.

Details

To keep additional documents from influencing the factor distribution calculated previously from
a particular text basis, they can be folded-in after the singular value decomposition performed in
lsa().

Background Information: For folding-in, a pseudo document vector mi of the new documents is
calculated into as shown in the equations (1) and (2) (cf. Berry et al., 1995):

(1) d̂ = vTTkS
−1
k

(2) m̂ = TkSkd̂

The document vector vT in equation~(1) is identical to an additional column of an input textmatrix
M with the term frequencies of the essay to be folded-in. Tk and Sk are the truncated matrices from
the SVD applied through lsa() on a given text collection to construct the latent semantic space.
The resulting vector m̂ from equation~(2) is identical to an additional column in the textmatrix
representation of the latent semantic space (as produced by as.textmatrix()). Be careful
when using weighting schemes: you may want to use the global weights of the training textmatrix
also for your new data that you fold-in!

Value

textmatrix a textmatrix representation of the additional documents in the latent semantic
space.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

10 lsa

See Also

textmatrix, lsa, as.textmatrix

Examples

create a first textmatrix with some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td, "D3", sep="/"))
matrix1 = textmatrix(td, minWordLength=1)
unlink(td, recursive=TRUE)

create a second textmatrix with some more files
td = tempfile()
dir.create(td)
write(c("cat", "mouse", "mouse"), file=paste(td, "A1", sep="/"))
write(c("nothing", "mouse", "monster"), file=paste(td, "A2", sep="/"))
write(c("cat", "monster", "monster"), file=paste(td, "A3", sep="/"))
matrix2 = textmatrix(td, vocabulary=rownames(matrix1), minWordLength=1)
unlink(td, recursive=TRUE)

create an LSA space from matrix1
space1 = lsa(matrix1, dims=dimcalc_share())
as.textmatrix(space1)

fold matrix2 into the space generated by matrix1
fold_in(matrix2, space1)

lsa Create a vector space with Latent Semantic Analysis (LSA)

Description

Calculates a latent semantic space from a given document-term matrix.

Usage

lsa(x, dims=dimcalc_share())

Arguments

x a document-term matrix (recommeded to be of class textmatrix), containing doc-
uments in colums, terms in rows and occurrence frequencies in the cells.

dims either the number of dimensions or a configuring function.

lsa 11

Details

LSA combines the classical vector space model — well known in textmining — with a Singular
Value Decomposition (SVD), a two-mode factor analysis. Thereby, bag-of-words representations
of texts can be mapped into a modified vector space that is assumed to reflect semantic structure.

With lsa() a new latent semantic space can be constructed over a given document-term matrix.
To ease comparisons of terms and documents with common correlation measures, the space can be
converted into a textmatrix of the same format as y by calling as.textmatrix().

To add more documents or queries to this latent semantic space in order to keep them from influ-
encing the original factor distribution (i.e., the latent semantic structure calculated from a primary
text corpus), they can be ‘folded-in’ later on (with the function fold_in()).

Background information (see also Deerwester et al., 1990):

A document-term matrix M is constructed with textmatrix() from a given text base of n docu-
ments containing m terms. This matrix M of the size m×n is then decomposed via a singular value
decomposition into: term vector matrix T (constituting left singular vectors), the document vector
matrix D (constituting right singular vectors) being both orthonormal, and the diagonal matrix S
(constituting singular values).

M = TSDT

These matrices are then reduced to the given number of dimensions k = dims to result into trun-
cated matrices Tk, Sk and Dk — the latent semantic space.

Mk =
k∑

i=1

ti · si · dTi

If these matrices Tk, Sk, Dk were multiplied, they would give a new matrix Mk (of the same format
as M , i.e., rows are the same terms, columns are the same documents), which is the least-squares
best fit approximation of M with k singular values.

In the case of folding-in, i.e., multiplying new documents into a given latent semantic space, the
matrices Tk and Sk remain unchanged and an additional Dk is created (without replacing the old
one). All three are multiplied together to return a (new and appendable) document-term matrix M̂
in the term-order of M .

Value

LSAspace a list with components (Tk, Sk, Dk), representing the latent semantic space.

Author(s)

Fridolin Wild <fridolin.wild@wu-wien.ac.at>

References

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990) Indexing by Latent
Semantic Analysis. In: Journal of the American Society for Information Science 41(6), pp. 391–
407.

Landauer, T., Foltz, P., and Laham, D. (1998) Introduction to Latent Semantic Analysis. In: Dis-
course Processes 25, pp. 259–284.

12 print.textmatrix

See Also

as.textmatrix, fold_in, textmatrix, gw_idf, dimcalc_share

Examples

create some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("ham", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "pet", "pet"), file=paste(td, "D3", sep="/"))

LSA
data(stopwords_en)
myMatrix = textmatrix(td, stopwords=stopwords_en)
myMatrix = lw_logtf(myMatrix) * gw_idf(myMatrix)
myLSAspace = lsa(myMatrix, dims=dimcalc_share())
as.textmatrix(myLSAspace)

clean up
unlink(td, recursive=TRUE)

print.textmatrix Print a textmatrix (Matrices)

Description

Display a one screen short version of a textmatrix.

Usage

print.textmatrix(x, bag_lines, bag_cols, ...)

Arguments

x A textmatrix.

bag_lines The number of lines per bag.

bag_cols The number of columns per bag.

... further arguments to be passed to or from other methods.

query 13

Details

Document-term matrices are often very large and cannot be displayed completely on one screen.
Therefore, the textmatrix print method displays only clippings (‘bags’) from this matrix.

Clippings are taken vertically and horizontally from beginning, middle, and end of the matrix.
bag_lines lines and bag_cols columns are printed to the screen.

To keep document titles from blowing up the display, the legend is printed below, referencing the
symbols used in the table.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

textmatrix

Examples

fake a matrix
m = matrix(ncol=800, nrow=400)
m[1:length(m)] = 1:length(m)
colnames(m) = paste("D",1:ncol(m),sep="")
rownames(m) = paste("W",1:nrow(m),sep="")
class(m) = "textmatrix"

show a short form of the matrix
print(m, bag_cols=5)

query Query (Matrices)

Description

Create a query in the format of a given textmatrix.

Usage

query (qtext, termlist, stemming=FALSE, language="german")

Arguments

termlist the termlist of the background latent-semantic space.

language specifies a language for stemming / stop-word-removal.

stemming boolean, specifies whether all terms will be reduced to their wordstems.

qtext the query string, words are separated by blanks.

14 sample.textmatrix

Details

Create queries, i.e., an additional term vector to be used for query-to-document comparisons, in the
format of a given textmatrix.

Value

query returns the query vector (based on the given vocabulary) as matrix.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

SnowballStemmer, textmatrix

Examples

prepare some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td,"D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td,"D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td,"D3", sep="/"))

demonstrate generation of a query
dtm = textmatrix(td)
query("monster", rownames(dtm))
query("monster dog", rownames(dtm))

clean up
unlink(td, TRUE)

sample.textmatrix Create a random sample of files

Description

Creates a subset of the documents of a corpus to help reduce a corpus in size through random
sampling.

Usage

sample.textmatrix(textmatrix, samplesize, index.return=FALSE)

sample.textmatrix 15

Arguments

textmatrix A document-term matrix.

samplesize Desired number of files

index.return if set to true, the positions of the subset in the original column vectors will be
returned as well.

Details

Often a corpus is so big that it cannot be processed in memory. One technique to reduce the size
is to select a subset of the documents randomly, assuming that through the random selection the
nature of the term sets and distributions will not be changed.

Value

filelist a list of filenames of the documents in the corpus.).

ix If index.return is set to true, a list is returned; x contains the filenames and ix
contains the position of the sample files in the original filelist.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

textmatrix

Examples

create some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td, "D3", sep="/"))
write(c("dog", "mouse", "dog"), file=paste(td, "D4", sep="/"))

create matrices
myMatrix = textmatrix(td, minWordLength=1)

sample(myMatrix, 3)

clean up
unlink(td, recursive=TRUE)

16 summary.textmatrix

stopwords Stopwordlists in German, English, Dutch, and French

Description

This data sets contain very common lists of words that want to be ignored when building up a
document-term matrix. The stop word lists can be loaded by calling data(stopwords_en),
data(stopwords_de), or data(stopwords_nl). The objects stopwords_de, stopwords_en,
and data(stopwords_nl) must already exist before being handed over to textmatrix().

The French stopword list has been combined by Haykel Demnati by integrating the lists from rank.nl
(www.rank.nl/stopwors/french.html), the one from the CLEF team at the University of Neuchatel
(http://members.unine.ch/jacques.savoy/clef/frenchST.txt), and the one prepared by Jean Véronis
(http://sites.univ-provence.fr/veronis/data/antidico.txt).

Usage

data(stopwords_de)
data(stopwords_en)
data(stopwords_nl)
data(stopwords_fr)

Format

A vector containing 424 English, 370 German, 260 Dutch, or 890 French stop words (e.g. ’he’,
’she’, ’a’).

Author(s)

Fridolin Wild <fridolin.wild@wu-wien.ac.at>, Marco Kalz <marco.kalz@ou.nl>
(for Dutch), Haykel Demnati <Haykel.Demnati@isg.rnu.tn> (for french)

summary.textmatrix Summary of a textmatrix (Matrices)

Description

Return a summary with some statistical infos about a given textmatrix.

Usage

summary.textmatrix(object, ...)

Arguments

object A textmatrix.

... further arguments to be passed to or from other methods.

textmatrix 17

Details

Returns some statistical infos about the textmatrix x: number of terms, number of documents,
maximum length of a term, number of values not 0, number of terms containing strange characters.

Value

matrix Returns a matrix.

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

textmatrix

Examples

fake a matrix
m = matrix(ncol=800, nrow=400)
m[1:length(m)] = 1:length(m)
colnames(m) = paste("D",1:ncol(m),sep="")
rownames(m) = paste("W",1:nrow(m),sep="")
class(m) = "textmatrix"

show a short form of the matrix
summary(m)

textmatrix Textmatrix (Matrices)

Description

Creates a document-term matrix from all textfiles in a given directory.

Usage

textmatrix(mydir, stemming=FALSE, language="english",
minWordLength=2, maxWordLength=FALSE, minDocFreq=1,
maxDocFreq=FALSE, minGlobFreq=FALSE, maxGlobFreq=FALSE,
stopwords=NULL, vocabulary=NULL, phrases=NULL,
removeXML=FALSE, removeNumbers=FALSE)

textvector(file, stemming=FALSE, language="english",
minWordLength=2, maxWordLength=FALSE, minDocFreq=1,
maxDocFreq=FALSE, stopwords=NULL, vocabulary=NULL,
phrases=NULL, removeXML=FALSE, removeNumbers=FALSE)

18 textmatrix

Arguments

file filename (may include path).

mydir the directory path (e.g., "corpus/texts/"); may be single files/directories
or a vector of files/directories.

stemming boolean indicating whether to reduce all terms to their wordstem.

language specifies language for the stemming / stop-word-removal.
minWordLength

words with less than minWordLength characters will be ignored.
maxWordLength

words with more than maxWordLength characters will be ignored; per default
set to FALSE to use no upper boundary.

minDocFreq words of a document appearing less than minDocFreq within that document will
be ignored.

maxDocFreq words of a document appearing more often than maxDocFreq within that doc-
ument will be ignored; per default set to FALSE to use no upper boundary for
document frequencies.

minGlobFreq words which appear in less than minGlobFreq documents will be ignored.

maxGlobFreq words which appear in more than maxGlobFreq documents will be ignored.

stopwords a stopword list that contains terms the will be ignored.

vocabulary if specified, only words in this term list will be used for building the matrix
(‘controlled vocabulary’).

removeXML if set to TRUE, XML tags (elements, attributes, some special characters) will be
removed.

removeNumbers
if set to TRUE, terms that consist only out of numbers will be removed.

phrases not implemented, yet.

Details

All documents in the specified directory are read and a matrix is composed. The matrix contains
in every cell the exact number of appearances (i.e., the term frequency) of every word for all docu-
ments. If specified, simple text preprocessing mechanisms are applied (stemming, stopword filter-
ing, wordlength cutoffs).

Stemming thereby uses Porter’s snowball stemmer (from package Snowball).

There are two stopword lists included (for english and for german), which are loaded on de-
mand into the variables stopwords_de and stopwords_en. They can be activated by calling
data(stopwords_de) or data(stopwords_en). Attention: the stopword lists have to be
already loaded when textmatrix() is called.

textvector() is a support function that creates a list of term-in-document occurrences.

For every generated matrix, an own environment is added as an attribute which holds the triples that
are stored by setTriple() and can be retrieved with getTriple().

If the language is set to "arabic", special characters for the Buckwalter transliteration will be kept.

triples 19

Value

textmatrix the document-term matrix (incl. row and column names).

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

SnowballStemmer, stopwords_de, stopwords_en, setTriple, getTriple

Examples

create some files
td = tempfile()
dir.create(td)
write(c("dog", "cat", "mouse"), file=paste(td, "D1", sep="/"))
write(c("hamster", "mouse", "sushi"), file=paste(td, "D2", sep="/"))
write(c("dog", "monster", "monster"), file=paste(td, "D3", sep="/"))

read them, create a document-term matrix
textmatrix(td)

read them, drop german stopwords
data(stopwords_de)
textmatrix(td, stopwords=stopwords_de)

read them based on a controlled vocabulary
voc = c("dog", "mouse")
textmatrix(td, vocabulary=voc, minWordLength=1)

clean up
unlink(td, recursive=TRUE)

triples Bind Triples to a Textmatrix

Description

Allows to store, manage and retrieve SPO-triples (subject, predicate, object) bound to the document
columns of a document term matrix.

Usage

getTriple(M, subject, predicate)
setTriple(M, subject, predicate, object)
delTriple(M, subject, predicate, object)
getSubjectId(M, subject)

20 triples

Arguments

M the document term matrix (see textmatrix).

subject column number or column name (e.g., "doc3" or 3).

predicate predicate of the triple sentence (e.g., "has_category" or "has_grade").

object value of the triple sentence (e.g., "14" or 14).

Details

SPO-Triples are simple facts of the uniform structure (subject, predicate, object). A subject is
typically a document in the given document-term matrix M, i.e. its document title (as in the column
names) or its column position. A key-value pair (the ‘predicate’ and the ‘object’) can be
bound to this ‘subject’.

This can be used, for example, to store classification information about the documents of the text
base used.

The triple data is stored in the environment of M constructed by textmatrix().

Whenever a matrix has to be used which has not been generated by this function, its class should be
set to ’textmatrix’ and an environment has to be added manually via:

class(mymatrix) = "textmatrix"

environment(mymatrix) = new.env()

Alternatively, as.matrix() can be used to convert a matrix to a textmatrix. To spare memory,
the manual method might be of advantage.

In getTriple(), the arguments ‘subject’ and ‘predicate’ are optional.

Value

textmatrix the document-term matrix (including row and column names).

Author(s)

Fridolin Wild <f.wild@open.ac.uk>

See Also

textmatrix

Examples

x = matrix(2,2,3) # we fake a document term matrix
rownames(x) = c("dog","mouse") # fake term names
colnames(x) = c("doc1","doc2","doc3") # fake doc titles
class(x) = "textmatrix" # usually done by textmatrix()
environment(x) = new.env() # usually done by textmatrix()

setTriple(x, "doc1", "has_category", "15")
setTriple(x, "doc2", "has_category", "7")
setTriple(x, "doc1", "has_grade", "5")

weightings 21

setTriple(x, "doc1", "has_category", "11")

getTriple(x, "doc1")
getTriple(x, "doc1")[[2]]
getTriple(x, "doc1", "has_category") # -> [1] "15" "11"

delTriple(x, "doc1", "has_category", "15")
getTriple(x, "doc1", "has_category") # -> [1] "11"

weightings Weighting Schemes (Matrices)

Description

Calculates a weighted document-term matrix according to the chosen local and/or global weighting
scheme.

Usage

lw_tf(m)
lw_logtf(m)
lw_bintf(m)
gw_normalisation(m)
gw_idf(m)
gw_gfidf(m)
entropy(m)
gw_entropy(m)

Arguments

m a document-term matrix.

Details

When combining a local and a global weighting scheme to be applied on a given textmatrix m via
dtm = lw(m) · gw(m), where

• m is the given document-term matrix,

• lw(m) is one of the local weight functions lw_tf(), lw_logtf(), lw_bintf(), and

• gw(m) is one of the global weight functions gw_normalisation(), gw_idf(), gw_gfidf(),
entropy(), gw_entropy().

This set of weighting schemes includes the local weightings (lw) raw, log, binary and the global
weightings (gw) normalisation, two versions of the inverse document frequency (idf), and entropy
in both the original Shannon as well as in a slightly modified, more common version:

lw_tf() returns a completely unmodified n×m matrix (placebo function).

22 weightings

lw_logtf() returns the logarithmised n×m matrix. log(mi,j + 1) is applied on every cell.

lw_bintf() returns binary values of the n × m matrix. Every cell is assigned 1, iff the term
frequency is not equal to 0.

gw_normalisation() returns a normalised n ×m matrix. Every cell equals 1 divided by the
square root of the document vector length.

gw_idf() returns the inverse document frequency in a n × m matrix. Every cell is 1 plus the
logarithmus of the number of documents divided by the number of documents where the term
appears.

gw_gfidf() returns the global frequency multiplied with idf. Every cell equals the sum of the
frequencies of one term divided by the number of documents where the term shows up.

entropy() returns the entropy (as defined by Shannon).

gw_entropy() returns one plus entropy.

Be careful when folding in data into an existing lsa space: you may want to weight an additional
textmatrix based on the same vocabulary with the global weights of the training data (not the new
data)!

Value

Returns the weighted textmatrix of the same size and format as the input matrix.

Author(s)

Fridolin Wild <f.wild@open.ac.uk§>

References

Dumais, S. (1992) Enhancing Performance in Latent Semantic Indexing (LSI) Retrieval. Technical
Report, Bellcore.

Nakov, P., Popova, A., and Mateev, P. (2001) Weight functions impact on LSA performance. In:
Proceedings of the Recent Advances in Natural language processing, Bulgaria, pp.187-193.

Shannon, C. (1948) A Mathematical Theory of Communication. In: The Bell System Technical
Journal 27(July), pp.379–423.

Examples

use the logarithmised term frequency as local weight and
the inverse document frequency as global weight.

vec1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
vec2 = c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
vec3 = c(0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0)
matrix = cbind(vec1,vec2, vec3)
weighted = lw_logtf(matrix)*gw_idf(matrix)

